ITO蚀刻膏浅谈ITO的特性
ITO就是在In2O3里掺入Sn后,Sn元素可以代替In2O3晶格中的In元素而以SnO2的形式存在,因为In2O3中的In元素是三价,形成SnO2时将贡献一个电子到导带上,同时在一些的缺氧状态下产生氧空穴,形成1020至1021cm-3的载流子浓度和10至30cm2/vs的迁移率。这个机理提供了在10-4Ω.cm数量级的低薄膜电阻率,所以ITO薄膜具有半导体的导电性能。
目前ITO膜层之电阻率一般在5*10-4左右,可达5*10-5,已接近金属的电阻率,在实际应用时,常以方块电阻来表征ITO的导电性能,ITO膜之透过率和阻值分别由In2O3与Sn2O3之比例控制,增加氧化锢比例则可提高ITO之透过率,通常Sn2O3:
In2O3=1:9,因为氧化锡之厚度超过200Å时,通常透明度已不够好--虽然导电性能很好。
如用是电流平行流经ITO脱层的情形,其中d为膜厚,I为电流,L1为在电流方向上膜厚层长度,L2为在垂直于电流方向上的膜层长主,当电流流过方形导电膜时,该层电阻R=PL1/dL2式中P为导电膜之电阻率,对于给定膜层,P和d可视为定值,P/d,当L1=L2时,其正方形膜层,无论方块大小如何,其电阻均为定值P/d,此即方块电阻定义:
R□=P/d,式中R□单位为:奥姆/□(Ω/□),由此可所出方块电阻与IOT膜层电阻率P和ITO膜厚d有关且ITO膜阻值越低,膜厚越大。
ITO膜层的电阻对高温和酸碱比较敏感,因为通常的电子产品生产工艺中要使用高温烘烤及各种酸碱液的浸泡,而一般在300°C
*30min的环境中,会使R□增大2-3倍,而在10wt%NaOH*5min及6wt%HCL*2min(60°C)下也会增到1.1倍左右,由此可知,在生产工艺中不宜采用高温生产及酸碱的长时清洗,若无法避免,则应尽量在低温下进行并尽量缩短动作时间。
ITO
膜在电子行业应用中,除了作为电子屏蔽、紫外线吸收阻断、红外线反射阻断等应用外,还有一大应用就是在平板显示器领域作为透明电极线路使用,利用ITO膜制作透明电极线路的方法主要为化学蚀刻、激光刻蚀两种。